When comparing relative volatilities of compounds, you must consider the molecular weight of a compound, as well as the intermolecular attractive forces between the identical molecules found in a sample of the compound in question.
We can eliminate choices I, II and V. These compounds have functional groups that feature polarized X-H bonds, allowing molecules in a sample of these compounds to participate in hydrogen bonding. Hydrogen bonding is a strong attractive force, and thus more energy would have to be put into a sample to vaporize it (boil a liquid sample). In other words, the hydrogen bonds will raise the boiling point and lower the volatility of these compounds.
Answer choice IV, which features an alkyl bromide, may also be eliminated for two reasons. First, as bromine is much heavier than carbon, molecule IV will be much heavier than III, and will thus require much more energy to transition into the gaseous state. Secondly, as bromine is fairly electronegative, the molecule will feature a dipole in the carbon-bromine bond, and thus a sample of IV will experience dipole-dipole attractive interactions. As described above, attractive intermolecular interactions require more energy to overcome in order for a sample to undergo a liquid-gas phase change. Thus, molecule IV is less volatile than molecule III, the correct answer.